Мне кажется, что предмет спора - если он вообще есть, вдруг от нас ускользнул. Получилось, что я как бы защищаю важность работы Строма, которою я, на самом деле, считаю малозначительной. Давайте вспомним, с чего все началось - с удивления Аввы, что в топологии вдруг немотивированно появляется понятие гомотопии, связанное с вещественными числами. Мое объяснение состояло в том, что отсутствие мотивации - это неслучайное обстоятельство (её нет).
И что затруднение объясняется тем случайным обстоятельством, что совсем элементарную часть теории гомотопий можно построитьь для всех (хаусдорфовых) пространств. Если бы граница "элементарного" была бы проведена в другом месте, это было бы невозможно.
В этом контексте выполнение аксиом модельной категории являются просто свидетельством того, что наши определения основных понятий разумны (согласуются друг с другом естественным образом). Собственно, это все, что мне нужно о работы Строма. Если там есть пробелы в доказательствах, меня это не удивит и не обеспокоит. Не он один, пробелы есть в куда как более важных работах.
Равным образом, с Вашего позволения, я, наверное, могу высказывать свое мнение о Мэе. "Справедливости ради следует отметить, что никто из топологов не трудоустроил такое количество пост-доков как он." Это и есть свидетельство влияния, едва ли не самое главное. Так или иначе, я позиции не ищу (и никогда не буду в области Мэя), а найти доказательство или хотя бы понятную формулировку какого-нибудь результата бывает нужно. Мэй закрыл эту область от посторонних - поскольку предварительными сведениями к чему угодно содержательному является тысяча страниц его трудов. И к разному - разные тысячи. И еще - вполне конкретная претензия - Мэй закрыл дорогу к публикации очень красивых работ Бордмана по спектрам (утверждая на каждом шагу, что его спектры лучше). В результате эти работы почти недоступны.
Я не предлагал общий принцип - называть модельную категории по названию её расслоений. Но в этих двух случаях мне это кажется разумным.
У нас, видимо, разные представления о том, что такое приложение. Я бы не назвал Ваши примеры приложениями - это некоторые технические средства, которые, в свою очередь, надо к чему-то прилагать. В этом смысле, должен признаться, я вообще не знаю (прямых) приложений модельных категорий.
То, что категория Серра эквивалентна симлициальным множествам, это скорее минус, а не плюс с точки зрения элегантности. "...гомотопические топологи как правило предпочитают работать симплициально..." Это еще одно средство закрыть науку от посторонних. Так или иначе, практически все объекты естественно возникают как пространства, а не симплициальные множества, и хочется работать с ними в таком виде. С другой стороны, реализация гомотопического типа как пространства бывает очень полезна.
Нет, не между CW-комплексами. Этого Уайтхеда неправильно называть старшим, поскольку они не родственики, и имена (и даже инициалы) разные.
no subject
Date: 2008-12-20 11:52 pm (UTC)И что затруднение объясняется тем случайным обстоятельством, что совсем элементарную часть теории гомотопий можно построитьь для всех (хаусдорфовых) пространств. Если бы граница "элементарного" была бы проведена в другом месте, это было бы невозможно.
В этом контексте выполнение аксиом модельной категории являются просто свидетельством того, что наши определения основных понятий разумны (согласуются друг с другом естественным образом). Собственно, это все, что мне нужно о работы Строма. Если там есть пробелы в доказательствах, меня это не удивит и не обеспокоит. Не он один, пробелы есть в куда как более важных работах.
Равным образом, с Вашего позволения, я, наверное, могу высказывать свое мнение о Мэе. "Справедливости ради следует отметить, что никто из топологов не трудоустроил такое количество пост-доков как он." Это и есть свидетельство влияния, едва ли не самое главное. Так или иначе, я позиции не ищу (и никогда не буду в области Мэя), а найти доказательство или хотя бы понятную формулировку какого-нибудь результата бывает нужно. Мэй закрыл эту область от посторонних - поскольку предварительными сведениями к чему угодно содержательному является тысяча страниц его трудов. И к разному - разные тысячи. И еще - вполне конкретная претензия - Мэй закрыл дорогу к публикации очень красивых работ Бордмана по спектрам (утверждая на каждом шагу, что его спектры лучше). В результате эти работы почти недоступны.
Я не предлагал общий принцип - называть модельную категории по названию её расслоений. Но в этих двух случаях мне это кажется разумным.
У нас, видимо, разные представления о том, что такое приложение. Я бы не назвал Ваши примеры приложениями - это некоторые технические средства, которые, в свою очередь, надо к чему-то прилагать. В этом смысле, должен признаться, я вообще не знаю (прямых) приложений модельных категорий.
То, что категория Серра эквивалентна симлициальным множествам, это скорее минус, а не плюс с точки зрения элегантности. "...гомотопические топологи как правило предпочитают работать симплициально..." Это еще одно средство закрыть науку от посторонних. Так или иначе, практически все объекты естественно возникают как пространства, а не симплициальные множества, и хочется работать с ними в таком виде. С другой стороны, реализация гомотопического типа как пространства бывает очень полезна.
Нет, не между CW-комплексами. Этого Уайтхеда неправильно называть старшим, поскольку они не родственики, и имена (и даже инициалы) разные.