Работа Гуревича доступна онлайн, ничего не стоит ее посмотреть -- MathSciNet ссылки не дает, а Google Book Search считает, что я чрезмерно злоупотребил их доверием и мой интерес к Collected Works of Witold Hurewicz не вполне бескорыстен. Да и нет у меня особых причин предполагать, что Спаниер не сумел вычленить главных результатов из этой работы. Думаю что более-менее все что в ней было важного вошло в Фоменко-Фукса.
Равно как ничего не стоит посмотреть список работ Гуревича, и убедиться в том, что у него есть несколько работ о спектральных последовательностях -- Вы опять пытаетесь разубедить меня в том, чего я никогда не говорил? Вам это удалось.
Постников Вас не поддерживает. Это обычный и почти неизбежный педагогический прием. -- Ну не знаю как вас еще убедить. Мои аргументы Вас не убеждают, прямые ссылки Вы отвергаете под надуманными предлогами. Вообще-то мысль (не моя) о том, что топология занимается топологическими пространствами, гомотопическая топология -- пространствами с точностью до гомотопической эквивалентности, теория узлов -- узлами с точностью до изотопии, а алгебраическая геометрия -- алгебраическими многообразиями представляется мне довольно банальной, чтобы тратить столько времени на ее обсуждение. Да и Ваша мысль о том что на самом деле математики просто решают интересные задачи, а не пытаются досконально понять предмет изучения (тем более, что как правило и надежды никакой нет) тоже в общем-то не сложная и я с ней вполне согласен. Не знаю можно ли считать наше разногласие чисто лингвистическим, но в любом случае позиции сторон ясны и менять свое мнение кажется никто не собирается. Пригласим арбитра?
no subject
Date: 2009-01-08 02:09 am (UTC)-- Вы опять пытаетесь разубедить меня в том, чего я никогда не говорил? Вам это удалось.
-- Ну не знаю как вас еще убедить. Мои аргументы Вас не убеждают, прямые ссылки Вы отвергаете под надуманными предлогами. Вообще-то мысль (не моя) о том, что топология занимается топологическими пространствами, гомотопическая топология -- пространствами с точностью до гомотопической эквивалентности, теория узлов -- узлами с точностью до изотопии, а алгебраическая геометрия -- алгебраическими многообразиями представляется мне довольно банальной, чтобы тратить столько времени на ее обсуждение. Да и Ваша мысль о том что на самом деле математики просто решают интересные задачи, а не пытаются досконально понять предмет изучения (тем более, что как правило и надежды никакой нет) тоже в общем-то не сложная и я с ней вполне согласен. Не знаю можно ли считать наше разногласие чисто лингвистическим, но в любом случае позиции сторон ясны и менять свое мнение кажется никто не собирается. Пригласим арбитра?