...это не настоящее приложение. -- Мне не слишком понятно чем "настоящее" приложение отличается от "не настоящего", впрочем я не горю желанием это выяснять. Просто "приложение" без всякого прилагательного звучит достаточно убедительно.
А это важно? Много ли приложений у общей топологии? -- Конечно важно! Вам ли этого не понимать? Все упирается в финансирование. Вы много знаете общих топологов получивших позицию в прошлом году? Или хотя бы живых экспертов? Нет уж, Ваше сравнение совершенно не адекватно.
...уже давным-давно (в 60-е) внедрены. -- Наверное Вы имеете в виду работу Артина-Мазура? Ничего другого даже на ум не приходит. Но это сложно назвать внедрением. Большинство алгебраических геометров (по-крайней мере из тех с кем мне доводилось общаться) в лучшем случае только слышали о ней. Да и сегодня этальная гомотопическая теория изучается в основном гомотопическими топологами. Гротендик писал Квиллену в "Pursuing stacks", что так и не освоил симплициальных методов, правда тут же выдвинул свою гипотезу "как оно все устроено на самом деле" и оказался прав. Под современным внедрением я имел в виду производную алгебраическую геометрию, которая вроде бы благосклонно воспринимается алгебраическими геометрами, по крайней мере связанными с геометрической теорией представлений, и конечно же мотивную гомотопическую теорию.
Это какой-то очень узкий взгляд на вещи -- Ну почему же узкий? Разве не правомощно сказать, что предметом изучения алгебраической геометрии является категория алгебраических многообразий? Изучать категорию означает решать задачи, которые в ней можно сформулировать. Для гомотопической категории хорошо бы, например, научиться вычислять множества морфизмов между объектами. Нужны, разумеется, и приложения, без них финансирование прикроют и будет все как с общей топологией.
...получается, что теория гомотопий не является частью гомотопической топологии, что довольно странно... -- Это именно то, что я пытаюсь Вам объяснить. То есть формально, конечно же является (именно об этом работа Строма), но на практике ее прекратили активно изучать с появлениями работ старого(?) Уайтхеда и диссертации Серра. В последние же 30 лет мне вообще неизвестно ни одной работы посвященной сильным гомотопическим эквивалентностям (т.е. конечно же исключения найти можно, например недавние работы Коула, но они скорее будут подтверждать правило). Я не исключаю, что со временем ситуация изменится, но это потребует дополнительного развития теории модельных категорий и, самое главное, новых приложений.
no subject
Date: 2008-12-23 04:55 am (UTC)-- Конечно важно! Вам ли этого не понимать? Все упирается в финансирование. Вы много знаете общих топологов получивших позицию в прошлом году? Или хотя бы живых экспертов? Нет уж, Ваше сравнение совершенно не адекватно.
-- Наверное Вы имеете в виду работу Артина-Мазура? Ничего другого даже на ум не приходит. Но это сложно назвать внедрением. Большинство алгебраических геометров (по-крайней мере из тех с кем мне доводилось общаться) в лучшем случае только слышали о ней. Да и сегодня этальная гомотопическая теория изучается в основном гомотопическими топологами. Гротендик писал Квиллену в "Pursuing stacks", что так и не освоил симплициальных методов, правда тут же выдвинул свою гипотезу "как оно все устроено на самом деле" и оказался прав. Под современным внедрением я имел в виду производную алгебраическую геометрию, которая вроде бы благосклонно воспринимается алгебраическими геометрами, по крайней мере связанными с геометрической теорией представлений, и конечно же мотивную гомотопическую теорию.
-- Ну почему же узкий? Разве не правомощно сказать, что предметом изучения алгебраической геометрии является категория алгебраических многообразий? Изучать категорию означает решать задачи, которые в ней можно сформулировать. Для гомотопической категории хорошо бы, например, научиться вычислять множества морфизмов между объектами. Нужны, разумеется, и приложения, без них финансирование прикроют и будет все как с общей топологией.
-- Это именно то, что я пытаюсь Вам объяснить. То есть формально, конечно же является (именно об этом работа Строма), но на практике ее прекратили активно изучать с появлениями работ старого(?) Уайтхеда и диссертации Серра. В последние же 30 лет мне вообще неизвестно ни одной работы посвященной сильным гомотопическим эквивалентностям (т.е. конечно же исключения найти можно, например недавние работы Коула, но они скорее будут подтверждать правило). Я не исключаю, что со временем ситуация изменится, но это потребует дополнительного развития теории модельных категорий и, самое главное, новых приложений.