siyuv: (Default)
siyuv ([personal profile] siyuv) wrote2008-12-19 11:31 pm
Entry tags:

Модельная категория Строма

На категории топологических пространств давно были построены две модельные категории: стандартная (принадлежащая Квиллену) и модельная категория Арне Строма, которая появилась в начале 70-х.

Категория Строма часто упоминается, хотя мало где используется существенным образом. Это связано ни с какими-либо свойствами этой модельной структуры, а с тем, что гомотопические эквикалентности между топологическими пространствами в качестве слабых эквивалентностей оставляют слишком много гомотопических типов; изучать их достаточно тяжело и видимо бесперспективно. Так или иначе, но единственная известная мне работа действительно использующая модельную категорию Строма принадлежит Майклу Коулу (заранее прошу прощения у читателей не имеющих доступа к МathSciNet и другим рессурсам, но этот автор не заботится о доступности своих работ). Там строится новая модельная категория (смешанная из стромовской и стандартной), но что с ней делать дальше остается неясным.

Между тем свойства стромовской модельной категории весьма примечательны. Например все объекты в ней одновременно кофибрантны и фибрантны. До сих пор неизвестно существует ли аналогичная модель для топологических пространств со слабыми гомотопическими эквивалентностями (Марк Хови предполагает что нет).

Однако тот факт что эта модельная категория в серьез не изучалась в последние 35 лет похоже привел к тому, что полного доказательства сегодня никто не знает. Я это обнаружил когда прочитал вот этот пост Мэя в рассылке по алгебраической топологии. Там он указывает, что в оригинальной работе имеются некоторые "subtle points". Настоящие ли это дыры я не знаю, но судя по тому что его студент передоказал теорему Строма в более ограничивающих условиях (для компактно-порожденных пространств), настоящие.

Мой интерес к этой модельной категории был в ту пору (в 2003 году, когда Мэй писал свой пост) не вполне праздным. Я искал тогда примеры модельных категорий, не порождающихся корасслоениями. Стромовская категория -- очевидный кандидат, но действительно ли она не является кофибрантно-порожденной по-видимому не известно до сих пор, как впрочем и то, верна ли теорема Строма в изначально заявленной общности.

[identity profile] siyuv.livejournal.com 2009-01-07 01:30 pm (UTC)(link)
Может, у Вас есть пример? -- да в общем-то любая работа по гомотопической топологии. Возьмите хотя бы инвариант Хопфа = 1. В гомотопической категории рассматриваются отображения из S^{2n-1} в S^n. Им ставятся в соответствие числа (инвариант Хопфа). Спрашивается: для каких n инвариант Хопфа может быть равен 1. Ответ: 2, 4 и 8.

Возьмите книгу Дьедонне на эту тему, например -- я Вас попросил сформулировать что является предметом изучения некой области, а Вы мне в ответ предлагаете почитать про историю ее развития. Это конечно интересно, но не тоже самое. Я просто не могу уловить в чем наше расхождение. Хотя похоже оно весьма фундаментально.

Меня удивляет, что Вы постоянно объединяете Уайтхеда (причем я так и не понял, которого) с Серром. -- Сначала я этого Уайтхеда назвал старшим -- Вы возразили, потом я назвал его старым -- Вы промолчали. Я перестал его как-то определять, решив что Вы уже поняли о ком идет речь. Я их не объединяю, а обозначаю переходный этап в развитии топологии. Их работы появились на рубеже 49-50 годов и обозначили революцию в области. Уайтхед ввел новый предмет изучения, а Серр убедительно показал, что этот предмет гораздо более интересный, чем тот что рассматривался до этого.

Это совсем не оригинальная точка зрения -- я догадываюсь, но на мой взгляд она часто бывает ошибочной. Вот история про Атиа, рассказанная как-то на лекции МакФерсоном: в какой-то момент Атиа всем говорил, что теория узлов это пройденный этап, изучать там больше нечего. Но через 10 лет, когда нашлись применения в физике, появились новые идеи тот же Атиа стал всем говорить что нужно заниматься теорией узлов. Когда его спросили: как же так, ведь 10 лет назад Вы говорили ровно противоположное. Он нашелся что ответить: "Я был прав тогда, прав и сейчас."

Примерно то же произошло/происходит с гомотопической теорией.

most of the basic (теории гомoтопий) principles are known -- А откуда вы цитируете, можно ссылку, пожалуйста? Я думал, что это его речь на конгрессе. Он это где-то написал?

К словам Адамса в 1966-м надо относиться с большой осторожностью -- про его болезнь я не знал. Будучи неправым по срокам (он не предвидел блестящих работ Квиллена, Сулливана, Сигала в начале 70х), Адамс оказался прав глобально. Это не секрет, что с середины 70х до середины 80х вся область находилась в упадке. Работ филдсовского уровня не было; статьи в Annals если и появлялись, то как правило решали задачи поставленные в начале 70х методами разработанными в начале 70х (нестабильный аналог спектральной последовательности Адамса).

Но предмет изучения гомотопической тополигии никуда не исчез (также как и теории узлов) и продолжал вызывать интерес. В конце 80х начался подъем и сегодня у нас практически ренессанс. Новые идеи, новые приложения... Появились новые интересные задачи.

Опять зашкалил за длину комента...

[identity profile] sowa.livejournal.com 2009-01-08 01:19 am (UTC)(link)
Проблема инварианта Хопфа - это не проблема о пространствах с точностью до слабых гомотопических эквивалентностей. Это проблема об отображниях сфер в сферы. Очень странно, что Вы привели ее в качестве примера, поскольку она в точно такой же степени является или не является проблемой о пространствах с точностью до сильной гомотопической эквивалентности.

Вы спросили, "Ну а что же они изучали?" На этот вопрос в двух словах не ответишь, и я отослал Вас к книге, в которой это подробно рассказано. Расхождение действительно фундаментально - Вы полагаете, что ответ на вопрос о том, чем занимается наука, можно дать на школьном уровне ("геометрия изучает плоские и пространственные фигуры"), я полагаю, что ответ можно дать только познакомившись с тем, чем реально занимались и занимаются в данной области.

Дж. Г. К. Уайтхед (видимо, речь идет о нем) не ввел никакого нового предмета изучения. Он ввел техническое средство, CW-комплексы. Серр ничего про этот "предмет" не доказал - он даже не цитирует ни одной работы Уайтхеда в своей диссертации.

Атийя действительно был прав оба раза. То, что два совершенно разных, почти не пересекающихся предмета можно назвать "теорией узлов", ничего не доказывает. Никаких приложений у классической теории узлов к физике нет. Стоит ли ей заниматься - спорный вопрос; некоторые всегда считали, что стоит, некоторые - что нет. Новый предмет, возникший в конце 80-х, является на самом деле не теорией узлов, а теорией специфических инвариантов узлов. Перспектива другая, задачи другие - это другой раздел математики.

"Примерно то же произошло/происходит с гомотопической теорией."

Возможно, теорией гомотопий просто стал называться другой предмет. Пока я не вижу, чем он интересен.

Я цитирoвал доклад Адамса на Конгрессе в Москве, а про болезнь - некролог в Bull. London Math. Soc.

" В конце 80х начался подъем и сегодня у нас практически ренессанс. Новые идеи, новые приложения... Появились новые интересные задачи."

Мне, как человеку постороннему, этого не видно. В тоже время мне видны многие достижения в областях, далеких от моих собственных интересов. Все, что Вы здесь упоминали - это, на мой взгляд, внутренние технические достижения. Специалистам, они, возможно, кажутся подъемом, но я отношусь к таким заявлениям скептически, повидав на своей жизни десятки предисловий, начинавшихся слова "Исследования в области Х переживают небывалый расцвет". Так что burden of proof снова на Вас: что за приложения, что за задачи?

[identity profile] siyuv.livejournal.com 2009-01-08 03:00 am (UTC)(link)
Это проблема об отображниях сфер в сферы -- с точностью до гомотопии, заметьте, т.е. проблема формулируется в гомотопической категории.

...она в точно такой же степени является или не является проблемой о пространствах с точностью до сильной гомотопической эквивалентности -- конечно, это содержание теоремы того самого Уайтхеда. Различие достаточно тонкое и проявляется в технических вопросах, которые Вы вряд ли признаете интересными. Тем не менее задачи гомотопической топологии формулируются именно в гомотопической категории, а в какой из двух -- иногда это не важно, иногда критично.

Расхождение действительно фундаментально -- ответил ниже по ветке.

Он ввел техническое средство, CW-комплексы -- несколько больше: он ввел относительные CW-комплексы, которые вместе с ретрактами заменили классические расслоения (по Борсуку). Новый предмет изучения он тоже ввел -- это пространства с точностью до слабых эквивалентностей. CW-комплексы ему были нужны, чтобы показать, что новый предмет изучения совпадает со старым для хороших пространств.

Серр ввел почти одновременно с Уайтхедом новое понятие расслоения и создал на их основе новые вычислительные средства. Формально CW-комплексы для этого не нужны, и я вполне допускаю, что по началу он не видел связи. Но эти две работы обозначили появление новой framework в которой следует изучать гомотопическую топологию. Позднее она стала называться стандартной модельной категорией. И появление этих двух работ с разницей в год весьма символично.

То, что два совершенно разных, почти не пересекающихся предмета можно назвать "теорией узлов", ничего не доказывает -- предмет изучения у них один (узлы с точностью до изотопии). Да и трудно мне представить специалиста по инвариантам Васильева, никогда не слышавшего, скажем, про мю-инварианты Милнора.

...является на самом деле не теорией узлов, а теорией специфических инвариантов узлов -- то что вопрос о распознавании узлов при помощи инвариантов конечного типа считается важной открытой проблемой прямо подтверждает мою точку зрения.

Возможно, теорией гомотопий просто стал называться другой предмет -- Вы пытаетесь сыграть в туже игру, как с теорией узлов. Я этого не принимаю. Предмет остался тем же и продолжает изучать гомотопическую категорию пространств. Появились новые методы, новые приложения, но менять название причин нет.

Мне, как человеку постороннему, этого не видно -- посторонний человек может это оценить по появлениям статей в ведущих журналах, по назначениям специалистов в ведущие университеты. Вникать не обязательно, косвенных свидетельств достаточно.

Так что burden of proof снова на Вас: что за приложения, что за задачи? -- У меня не достаточно авторитета, чтобы высказываться за всю область, поэтому публично я этого делать не стану.

[identity profile] sowa.livejournal.com 2009-01-08 04:03 am (UTC)(link)
Какая разница, какие гомотопические эквивалентности рассматриваются? Речь идет о сферах, самых обыкновенных, круглых. Отображения можно рассматривать только гладкие, или даже вещественно-аналитические. При чем тут слабые и сильные эквивалентности?

А работу Уайтхеда Вы смотрели?

"И появление этих двух работ с разницей в год весьма символично."

Ну и аргумент!

Далее у Вас получается порочный круг - Вы обосновываете свою точку зрения, заранее принимая ее. Если раздел математики определяется "предметом изучения" в Вашем смысле, то он им, разумеется, определяется. Содержания в такой аргументации - ноль.

"У меня не достаточно авторитета, чтобы высказываться за всю область, поэтому публично я этого делать не стану."

А вот это меня, честно, потрясло. Я ожидал, что Вы расскажете про интересные результаты, интересные задачи. А Вы говорите про какой-то авторитет. Выходит, Вы просто не знаете никаких интересных результатов и задач. Из чего мне придется заключить, что их действительно нет, а есть внутреннее развитие теории, интересное только специалистам. Не даром Вы все время говорите по то, что разные области математики расходятся.

[identity profile] siyuv.livejournal.com 2009-01-08 05:11 pm (UTC)(link)
Какая разница, какие гомотопические эквивалентности рассматриваются? -- в данном случае никакой.

Речь идет о сферах, самых обыкновенных, круглых. Отображения можно рассматривать только гладкие, или даже вещественно-аналитические. -- речь идет о классах отображений с точностью до гомотопии. Сферы могут быть любые -- хоть квадратные, хоть с рожками. Отображения тоже. Важен только их класс эквивалентности.

При чем тут слабые и сильные эквивалентности? -- простите, я забыл что Вы можете этого не знать. Квиллен доказал, что гомотопическая категория является локализацией (в смысле Габриеля-Зисмана) категогрии пространств по классу эквивалентностей. Так что от выбора эквивалентностей зависят множества гомотопических классов отображений между пространствами.

А работу Уайтхеда Вы смотрели? -- нет, а зачем? Она пересказана десятки раз.

Ну и аргумент! -- хороший аргумент. Он говорит о том, что революция в области на тот момент назрела. А вы как думаете?

Вы обосновываете свою точку зрения, заранее принимая ее -- обоснований для своей точки зрения по-поводу того, что является предметом гомотопической топологии, я привел более чем достаточно. Если Вам вдруг не хватило, то взгляните на первый пункт программы курса гомотопической топологии в НМУ.

Конечно можно сказать про любую область, что ее предмет это то чем она занимается. Но это масло масленое. Предмет это не то чем область занимается, а то что ее ограничивает. Как только выходит за рамки предмета, это уже приложение. Следуя же Вашей логике, все приложения следует включать непосредственно в предмет, а это очевидно не так.

В последнем комменте я пытался не обосновать этот нехитрый тезис, а объяснить каким образом Уайтхед ввел новый предмет изучения и какова связь с работой Серра.

А вот это меня, честно, потрясло -- неужели Вы не понимаете, что требуете от меня выставления оценок людям, которые сами регулярно ставят мне оценки и будут продолжать этим заниматься еще много лет по запросам различных Search/Promotion Committees. Ну ладно, если Вас так уж интересует мое мнение, то я попробую его изложить завтра, но только в самых общих чертах и только в моей узкой области.

Не даром Вы все время говорите по то, что разные области математики расходятся -- а вот это уже передергивание. Я сказал это единственный раз о двух конкретных областях (точнее даже под-областях) и выразил свое неудовольствие продолжающим углубляться разрывом.

[identity profile] sowa.livejournal.com 2009-01-09 12:50 am (UTC)(link)
Мало ли чего Квиллен доказал спустя 35 лет после Хопфа. Проблема инварината Хопфа была поставлена как задача об отображениях сфер в сферы. Да и решена она была до работы Квиллена. Вы бы еще сказали, что Ньютон решал задачи про интеграл Лебега.

""А работу Уайтхеда Вы смотрели?" -- нет, а зачем? Она пересказана десятки раз."

Ну вот видите! Вы мне излагаете какие-то недавние представления, сложившиеся у весьма узкой группы людей. А я смотрел все упомянутые в этой дискуссии работы. Вы даете ссылку - я нахожу работу, скачиваю, смотрю, что там написано. И Серра, и Уайтхеда.

Аргумент никудышный. Работы Серра и Уайтхеда принадлежат различным традициям, и никакой революции вместе не образуют. Работа Серра действительно революционна, а работа Уайтхеда разрабатывает технические средства.

Что касается пунктов программы, то я Вам уже ответил на это поводу Постникова - в начале приходится давать такие "псевдо-объяснения", поскольку у студентов еще нет знаний, чтобы понять настоящие.

"Предмет это не то чем область занимается, а то что ее ограничивает."

Области не надо ограничивать. Они это плохо переносят. Ограниченная область - кандидат на мертвую науку.

Никаких оценок я от Вас не требую. Первый раз в жизни встречаю человека, который отказывается рассказать, что в его науке интересного.

[identity profile] siyuv.livejournal.com 2009-01-14 12:48 pm (UTC)(link)
Мало ли чего Квиллен доказал спустя 35 лет после Хопфа -- да нет, он это только обобщил и красиво записал. Я уверен, что и раньше было понятно, что слабые эквивалентности определяют гомотопическую категорию.

Вы бы еще сказали, что Ньютон решал задачи про интеграл Лебега -- не скажу, поскольку Ньютон не пользовался теорией меры, но если вы скажете, что Адамс не пользовался CW-комплексами, слабыми эквивалентностями и расслоениями Серра, то он наверное в гробу перевернется.

...сложившиеся у весьма узкой группы людей -- но ведь людей размышлявших именно над этими вопросами.

я смотрел все упомянутые в этой дискуссии работы -- видите ли, чтобы оценить значение той или иной работы необходимо посмотреть на нее в перспективе. Беглый просмотр ничего не дает. Я не скачивал те работы, про содержание которых я знаю из книг. Более того, книги передают содержание работы уже переосмыслив его, иногда не по первому разу и рассказывают о его значении, а это, согласитесь, гораздо более ценная информация, нежели просто содержание работы.

...никакой революции вместе не образуют -- мне казалось, что для того чтобы понять связь между этими работами достаточно понимать стандартную модельную категорию для пространств, а Вы вроде бы понимаете. Но оставим модельные категории. Возьмите любой современный учебник по алгебраической топологии. Хотя бы тот же Фоменко-Фукс. В нем рассказывается и про корасслоения Борсука, и про расслоения Гуревича, но со временем выясняется, что первые были нужны только для того, чтобы показать, что относительные CW-комплексы являются парами Борсука, а вторые нужны только для того, чтобы пояснить почему расслоения Серра вообще называются расслоениями. После этого остаются только CW-комплексы и расслоения Серра. Очевидно, что это не случайность.

Работа Серра действительно революционна, а работа Уайтхеда разрабатывает технические средства -- но работу Уайтхеда никак нельзя назвать недооцененной. Она была опубликована в хорошем журнале и вошла во все книжки по алгебраической топологии. Она в высшей степени концептуальна (говорю это не потому, что читал работу, а потому, что знаю какие концепции там представлены). О ее техничности судить не берусь, поскольку не читал, а в пересказе технику наверняка причесали.

Что касается пунктов программы, то я Вам уже ответил на это поводу Постникова -- по-поводу Постникова Вы сослались на тяжелую задачу написания предисловия, хотя Постников писал не предисловие, а ознакомительную статью, целью которой ставилось объяснить чем занимаются различные разделы топологии. Но допустим он прибег к такому приему вынуждено. Этого никак нельзя сказать про лектора, который выносит отдельным пунктом программы "Предмет гомотопической топологии". Приходиться предположить, что то о чем он там собирается рассказывать, он и в самом деле считает предметом этой науки.

Области не надо ограничивать -- однако очевидно, что на практике это делается, хотя бы для того, чтобы отличать одну область от другой.

Ограниченная область - кандидат на мертвую науку -- вот это меня удивило. Вообще-то всему когда-нибудь приходит конец. Все живущие кандидаты в покойники. Математические дисциплины не исключение. Если предмет себя исчерпал, то разумеется область умирает.

Первый раз в жизни встречаю человека, который отказывается рассказать, что в его науке интересного. -- Вы правы, я устыдился и исправился, вынеся рассказ о модельных категориях отдельным постом, т.к. здесь уже становится тяжело ориентироваться.

[identity profile] sowa.livejournal.com 2009-01-15 07:41 am (UTC)(link)
Тут снова проявляются почти диаметрально противоположные представления о математике. Начиная с оценки работы Квиллена. Самое яркое место:

"видите ли, чтобы оценить значение той или иной работы необходимо посмотреть на нее в перспективе. Беглый просмотр ничего не дает. Я не скачивал те работы, про содержание которых я знаю из книг. Более того, книги передают содержание работы уже переосмыслив его, иногда не по первому разу и рассказывают о его значении, а это, согласитесь, гораздо более ценная информация, нежели просто содержание работы."

Видите ли, из книг Вы не узнаете содержания ни одной работы. В частности, Вы не увидите перспективы. В книгах есть нечто, названное CW-комплексами, есть теорема Уайтхеда, и т.п. Все это в пережеванном виде, с выброшенными вопросами, ради которых все это было придумано, с выборшенным vision автора, и так далее. Разумеется, начинать изучать предмет надо с книг. Но вот из книг у Вас сложилась неправильная картина - Вам казалось, что расслоения Гуревича были до расслоений Серра, а они появились позже. На уровне книг у меня обо всем этом есть представление. А статьи я смотрел, что уточнить исторические детали.

Разумеется, работу Уайтхеда нельзя назвать недооцененной. Разве я говорил что-нибудь подобное?

Я не знаю, откуда Вы цитировали Постникова, но цитированное "объяснение" имеется в его учебнике, основанном на его лекциях в МГУ, которые он читал не один раз. Он мог вставить его и какую-нибудь статью - это все равно идет от преподавания. Тем более у того лектора. Скорее всего он заимствовал это у Постникова, но даже если он это независимо придумал - перед ним стояла ровно та же задача, о которой я говорил: дать общее представление о предмете тем, кто еще не готов к пониманию его подлинной мотивировки.

[identity profile] siyuv.livejournal.com 2009-01-23 06:29 am (UTC)(link)
Все это в пережеванном виде, с выброшенными вопросами, ради которых все это было придумано, с выборшенным vision автора -- у нас действительно очень разный взгляд на математику. Именно из-за того, что автор оригинальной работы полу-вековой давности интересуется вопросами, которые как правило потеряли актуальность я и не люблю смотреть в старые статьи, если есть достойная альтернатива. Когда Вам нужно освоить что-то новое Вы тоже предпочитаете обращаться к первоисточнику? Что-то мне подсказывает, что нет. По-крайней мере статьи Кана Вы не очень-то спешите читать.

Вам казалось, что расслоения Гуревича были до расслоений Серра, а они появились позже -- да, гладкость изложения в Фоменке-Фуксе обманчива в этом месте. Но я не думаю, что обманулся на каком-то концептуальном уровне.

А статьи я смотрел, что уточнить исторические детали -- конечно, только с точки зрения истории мматематики это и интересно, но когда я говорю о революции в предмете последовавшей за той или иной работой, или о связи двух казалось бы не связанных работ, то проверить мои утверждения, заглянув в оригинальные статьи нельзя. Там про это ничего нет. Нужно поинтересоваться более поздними интерпретациями.

...работу Уайтхеда нельзя назвать недооцененной. Разве я говорил что-нибудь подобное? -- Вы сказали, что она разрабатывает технические средства, по сравнению с революционной работой Серра. Это выглядит как не слишком высокая оценка. И на мой взгляд не заслуженная. Техника представленная у Вайтхеда уступает два порядка технике Серра, но при этом ему удалось заложить новые основания области, перенаправить исследования в новое русло.

...перед ним стояла ровно та же задача, о которой я говорил: дать общее представление о предмете тем, кто еще не готов к пониманию его подлинной мотивировки -- спор о таком фундаментальном понятии как предмет той или иной области наверняка должен был привлечь философов науки. Не знаете ли Вы каких-нибудь филосовских трудов, способных его разрешить?

[identity profile] sowa.livejournal.com 2009-01-23 07:15 am (UTC)(link)
"Когда Вам нужно освоить что-то новое Вы тоже предпочитаете обращаться к первоисточнику?"

Да, обычно. Бывает, что оригинальные работы написаны очень плохо, тогда приходится обращаться к переизложениям - если они есть. Никаких поводов читать Кана у меня нет - это не моя специальность, и мне кажется, что он не очень-то хорошо писал.

"...проверить мои утверждения, заглянув в оригинальные статьи нельзя."

Можно, особенно если оказывается, что оригинальные статьи оказываются не о том, о чем Вы думали.

"....ему удалось ... перенаправить исследования в новое русло.

Да ну? В новое русло исследования направила диссертация Серра, а работа Уайтхеда - это technical framework для записи - даже не результатов, а доказательств.

Не думаю, что стоит искать философские глубины во вводных лекциях. Философских трудов на эту тему не знаю. Почти все, что философы пишут о математике - полная чушь.

[identity profile] sowa.livejournal.com 2009-01-08 04:11 am (UTC)(link)
"-- ответил ниже по ветке."

Где?