Entry tags:
Модельная категория Строма
На категории топологических пространств давно были построены две модельные категории: стандартная (принадлежащая Квиллену) и модельная категория Арне Строма, которая появилась в начале 70-х.
Категория Строма часто упоминается, хотя мало где используется существенным образом. Это связано ни с какими-либо свойствами этой модельной структуры, а с тем, что гомотопические эквикалентности между топологическими пространствами в качестве слабых эквивалентностей оставляют слишком много гомотопических типов; изучать их достаточно тяжело и видимо бесперспективно. Так или иначе, но единственная известная мне работа действительно использующая модельную категорию Строма принадлежит Майклу Коулу (заранее прошу прощения у читателей не имеющих доступа к МathSciNet и другим рессурсам, но этот автор не заботится о доступности своих работ). Там строится новая модельная категория (смешанная из стромовской и стандартной), но что с ней делать дальше остается неясным.
Между тем свойства стромовской модельной категории весьма примечательны. Например все объекты в ней одновременно кофибрантны и фибрантны. До сих пор неизвестно существует ли аналогичная модель для топологических пространств со слабыми гомотопическими эквивалентностями (Марк Хови предполагает что нет).
Однако тот факт что эта модельная категория в серьез не изучалась в последние 35 лет похоже привел к тому, что полного доказательства сегодня никто не знает. Я это обнаружил когда прочитал вот этот пост Мэя в рассылке по алгебраической топологии. Там он указывает, что в оригинальной работе имеются некоторые "subtle points". Настоящие ли это дыры я не знаю, но судя по тому что его студент передоказал теорему Строма в более ограничивающих условиях (для компактно-порожденных пространств), настоящие.
Мой интерес к этой модельной категории был в ту пору (в 2003 году, когда Мэй писал свой пост) не вполне праздным. Я искал тогда примеры модельных категорий, не порождающихся корасслоениями. Стромовская категория -- очевидный кандидат, но действительно ли она не является кофибрантно-порожденной по-видимому не известно до сих пор, как впрочем и то, верна ли теорема Строма в изначально заявленной общности.
Категория Строма часто упоминается, хотя мало где используется существенным образом. Это связано ни с какими-либо свойствами этой модельной структуры, а с тем, что гомотопические эквикалентности между топологическими пространствами в качестве слабых эквивалентностей оставляют слишком много гомотопических типов; изучать их достаточно тяжело и видимо бесперспективно. Так или иначе, но единственная известная мне работа действительно использующая модельную категорию Строма принадлежит Майклу Коулу (заранее прошу прощения у читателей не имеющих доступа к МathSciNet и другим рессурсам, но этот автор не заботится о доступности своих работ). Там строится новая модельная категория (смешанная из стромовской и стандартной), но что с ней делать дальше остается неясным.
Между тем свойства стромовской модельной категории весьма примечательны. Например все объекты в ней одновременно кофибрантны и фибрантны. До сих пор неизвестно существует ли аналогичная модель для топологических пространств со слабыми гомотопическими эквивалентностями (Марк Хови предполагает что нет).
Однако тот факт что эта модельная категория в серьез не изучалась в последние 35 лет похоже привел к тому, что полного доказательства сегодня никто не знает. Я это обнаружил когда прочитал вот этот пост Мэя в рассылке по алгебраической топологии. Там он указывает, что в оригинальной работе имеются некоторые "subtle points". Настоящие ли это дыры я не знаю, но судя по тому что его студент передоказал теорему Строма в более ограничивающих условиях (для компактно-порожденных пространств), настоящие.
Мой интерес к этой модельной категории был в ту пору (в 2003 году, когда Мэй писал свой пост) не вполне праздным. Я искал тогда примеры модельных категорий, не порождающихся корасслоениями. Стромовская категория -- очевидный кандидат, но действительно ли она не является кофибрантно-порожденной по-видимому не известно до сих пор, как впрочем и то, верна ли теорема Строма в изначально заявленной общности.
no subject
На работу Строма имеется около 20 ссылок, зарегистрированных MathSciNet (то есть за последние 10 лет, не больше). Что очень неплохо для столь давней работы. Я посмотрел одну из этих работ, Dwyer-Weiss-Williams, на мой взгляд очень интересную. Там ссылаются на работу Строма для доказательства того, что некая категория является категорией Вальдхаузена, что, видимо, очень важно для работы Dwyer-Weiss-Williams.
По поводу Мэя. Мэй не один раз писал, и не только в рассылках, но и в публикациях и reviews (рассылок еще и не было), что та или иная работа чем-то плоха, или что он видит в ней существенные дыры. Его обычная цель - перенаправить читателя к его собственным трудам. Мне это кажется не очень достойным поведением. В целом влияние Мэя на этот предмет на мой посторонний взляд убийственное. Изучать работы Мэя невозможно - по каждому поводу он пишет несколько книг, и ради чего их читать - непонято. Но он вытеснил практически всех, кто не принадлежит к его школе.
При этом я вполне допускаю, что Стром допустил ту же ошибку, что и другие в его время - работал с топологическими пространствами там, где нужны компактно-порожденные. Чтобы это выяснить, надо читать работу, а не агитацию Мэя.
Судя по тому, что удается найти в сети, Стром бросил математику после трех работ, и это наводит на мысль, что все идеи этих трех работ принадлежат его руководителю. Мне не удалось даже выяснить, кто был его руководителем. Мои предположения - D. Puppe, V. Puppe, T. tom Dieck, A. Dold. Это я к тому, что не стоит называть эту категорию категорией Строма. Лучше придумать нейтральное название; я бы предложил такие категории называть по названию используемых расслоений.
Интересно, есть ли модельная категория, в которой расслоениями являются расслоения Дольда?
Мне кажется, что использование модельной категории Серра (используя предложенную терминологию) как минимум не очень элегантно. Мы не стремимся изучать детально все гомотопические типы, но абстрактная теория хорошо работает и в случае Гуревича, и многие слабые гомотопические эквивалентности на самом деле являются настоящими (один из Puppe).
no subject
no subject
Так или иначе, но пересмотреть работу Строма стоило давно, и по-видимому студент Мэя это сделал (компактная порожденность для пространств это не существенное ограничение). Если бы он выложил свой препринт 5 лет назад, то я бы с удовольствием его прочитал, а так я наткнулся на его статью только когда искал ссылки для ответа Вам, но интерес мой к этой теме давно прошел.
С Вашего позволения, я уклонюсь от обсуждения морально-этической стороны поступков Мэя. Он обладает достаточным влиянием, хоть и не столь громадным как Вы пишете, а у меня пока даже постоянства нет. Справедливости ради следует отметить, что никто из топологов не трудоустроил такое количество пост-доков как он.
-- не годится, Коул как раз и показал, что можно совместить расслоения Гуревича со слабыми эквивалентностями. Можно попробовать называть их по эквивалентностям, соответственно "сильной" и "слабой", но за Квиленовской категорией прочно укоренилось наименование "стандартная".
Приведенный Вами пример с безусловно интересной статьей Dwyer-Weiss-Williams я не могу принять в качестве существенного использования сильной модельной категории. Проверить наличие структуры Вальдхаузена на порядок проще, чем установить существование модельной категории (нет факторизаций), кроме того они ограничивают рассмотрение пространствами гомотопически эквивалентными CW-комплексам, короче ссылка на Строма чисто формальная, призванная показать то, что и так очевидно (тривиальную часть аксиом модельной категории).
Я попытаюсь объяснить что я имею в виду под приложением для модельной категории. Это должна быть одна из тех вещей, для которых модельные категории действительно полезны. Например вычисление гомотопических пределов (для этого хорошо бы уметь продолжать модельную структуру на категорию диаграмм пространств), или для классификации/построения гомологических инвариантов (хорошо бы построить стабилизацию сильной модельной категории) и научиться локализовать по отношению к ним или по отношению к произвольным морфизмам. Ничего этого нет даже после работы Коула. Именно поэтому я так удивился, что Вы упомянули сильную категорию.
-- вполне естественный вопрос. Если бы категория Строма была изучена лучше, наверное на него не сложно было бы ответить. (Есть препринт Тибора Беке, в котором он строит много модельных категорий на симплициальных множествах варьируя расслоения и корасслоения, а эквивалентности оставляя без изменений; наверняка что-то подобное можно сделать и для пространств).
-- оно оправдано уже тем, что эта категория оказывается эквивалентной (по Квиллену) симплициальным множествам, и хотя гомотопические топологи как правило предпочитают работать симплициально, слабая структура на пространствах важна, т.к. в ней все объекты фибрантны, а это часто бывает полезно.
-- если между CW-комплексами, то это старший Вайтхед.
no subject
И что затруднение объясняется тем случайным обстоятельством, что совсем элементарную часть теории гомотопий можно построитьь для всех (хаусдорфовых) пространств. Если бы граница "элементарного" была бы проведена в другом месте, это было бы невозможно.
В этом контексте выполнение аксиом модельной категории являются просто свидетельством того, что наши определения основных понятий разумны (согласуются друг с другом естественным образом). Собственно, это все, что мне нужно о работы Строма. Если там есть пробелы в доказательствах, меня это не удивит и не обеспокоит. Не он один, пробелы есть в куда как более важных работах.
Равным образом, с Вашего позволения, я, наверное, могу высказывать свое мнение о Мэе. "Справедливости ради следует отметить, что никто из топологов не трудоустроил такое количество пост-доков как он." Это и есть свидетельство влияния, едва ли не самое главное. Так или иначе, я позиции не ищу (и никогда не буду в области Мэя), а найти доказательство или хотя бы понятную формулировку какого-нибудь результата бывает нужно. Мэй закрыл эту область от посторонних - поскольку предварительными сведениями к чему угодно содержательному является тысяча страниц его трудов. И к разному - разные тысячи. И еще - вполне конкретная претензия - Мэй закрыл дорогу к публикации очень красивых работ Бордмана по спектрам (утверждая на каждом шагу, что его спектры лучше). В результате эти работы почти недоступны.
Я не предлагал общий принцип - называть модельную категории по названию её расслоений. Но в этих двух случаях мне это кажется разумным.
У нас, видимо, разные представления о том, что такое приложение. Я бы не назвал Ваши примеры приложениями - это некоторые технические средства, которые, в свою очередь, надо к чему-то прилагать. В этом смысле, должен признаться, я вообще не знаю (прямых) приложений модельных категорий.
То, что категория Серра эквивалентна симлициальным множествам, это скорее минус, а не плюс с точки зрения элегантности. "...гомотопические топологи как правило предпочитают работать симплициально..." Это еще одно средство закрыть науку от посторонних. Так или иначе, практически все объекты естественно возникают как пространства, а не симплициальные множества, и хочется работать с ними в таком виде. С другой стороны, реализация гомотопического типа как пространства бывает очень полезна.
Нет, не между CW-комплексами. Этого Уайтхеда неправильно называть старшим, поскольку они не родственики, и имена (и даже инициалы) разные.
no subject
-- меня тоже удивило, что Вы за это взялись.
-- да, теперь я понял как Вы к этому пришли, просто когда разговор ведется на уровне мотивировок, способных вызвать интерес к предмету, то стоит указать какое направление является основным, а какое побочным. Все что я хотел сделать, это указать на эзотеричность сильной модельной категории. Путаница в таких вопросах не столь уж безобидна, как может показаться. Мне известна еще одна относительно недавняя работа (диссертация написанная у моего научного руководителя незадолго до меня) изучающая сильные эквивалентности, правда в эквивариантном контексте и без использования модельных категорий. Она была невероятно технически сложна, и так и осталась не опубликованной, в первую очередь потому, что результат оказался через чур "сильным" и абсолютно не востребованным.
-- конечно, взгляд со стороны мне очень интересен. Что касается Бордмана, то мне всегда казалось, что он избегал конфликтов с Мэем, по крайней мере в истории с открытием операд он предпочел не высказываться. Его работы про спектры не единственное, что он не опубликовал. У него есть очень интересный обзор спектральных последовательностей с алгебраической точки зрения. Он увидел свет только в конце 90х, хотя препринты ходили с середины 70х. Возможно, что причина кроется в его личной пониженной амбициозности? Про спектры есть еще одна важная работа оставшаяся неопубликованной. Я говорю о работе Лидакиса, которая конкурировала с EKMM. О причинах, по которым она осталась неопубликованной остается только догадываться, с доступностью ее, правда, проблем нет, благодаря интернету, но автор практически ушел из математики (хоть и работает в университете на Крите, но статей не пишет и на конференции не ездит).
-- интересно, а работу Мореля-Воеводского Вы признаете приложением модельных категорий? Я согласен, что мои примеры не являются приложениями в прямом смысле, но не имея в своем распоряжении этих технических средств, невозможно найти и приложения подобдого работе Мореля-Воеводского. (Правда исторически как раз эта работа во многом дала толчок развитию абстрактной теории).
-- я с этим не согласен. Симплициальные методы настолько хорошо зарекомендовали себя не только в топологии, но и в алгебре, а сегодня активно внедряются в алгебраическую геометрию, что "посторонним" лучше бы их выучить. Конечно почти всегда удается распространить результат на топологические пространства, но это зачастую связано с техническими трудностями, и совершенно не очевидно, что их имеет смысл преодолевать. Имеются, кстати и обратные примеры, т.е. утверждения верные для топологических пространств, которые не удается немедленно распространить на симплициальные множества, но это и не обязательно делать -- в конце концов предметом изучения гомотопической топологии остается гомотопическая категория, а различные ее модели это всего лишь средства.
no subject
На мой взгляд, она более чем естественна, а расслоения Серра, слабые эквивалентности, etc. - это от бедности, или, скорее, от стремления поскорее получить результат (Серр просто выбрал простейшее свойство, достаточное для того, чтобы его доказательства работали, а остальное его не интересовало).
"...он избегал конфликтов с Мэем..."
Похоже, что мой взгляд на Мэя разделяют и люди внутри предмета. (Мои представления основаны на опубликованных текстах, а не инсайдерской информации - у меня ее нет.) Я рискну высказать гипотезу: Мэй жутко завидует Бордману, с его vision, которому Мэй может противопоставить только техническую силу.
"...правда в эквивариантном контексте..."
Стандарный способ сделать что-нибудь безнадежно сложным и потом сказать, что только моя теория годится для преодоления этих сложностей (метод Мэя).
"Возможно, что причина кроется в его личной пониженной амбициозности?"
Предисловие к препринтам о спектрах более чем амбициозное.
По поводу Мореля-Воеводского я готов согласиться с Вашим описанием, с той оговоркой, что из него как раз и следует, что это не настоящее приложение. А это важно? Много ли приложений у общей топологии?
"Симплициальные методы настолько хорошо зарекомендовали себя не только в топологии, но и в алгебре, а сегодня активно внедряются в алгебраическую геометрию, что "посторонним" лучше бы их выучить."
В алгебраическую геометрию они не внедряются, они уже давным-давно (в 60-е) внедрены. Но как их учить посторонним? По чудовищной книге Мэя? Или по книге Goerss-Jardine, которое предполагает свободное владение теорией категорий на уровне, далеко превосходящим тот, который обычно встречается у посторонних? Вроде как больше ничего нет.
"...предметом изучения гомотопической топологии остается гомотопическая категория"
Это какой-то очень узкий взгляд на вещи. И что значит "изучать категорию"? Изучать ее категорные свойства? Без приложений это не особенно интересно. Поскольку при этом вы настаиваете на категории Серра-Квиллена, получается, что теория гомотопий не является частью гомотопической топологии, что довольно странно, неправда ли?
no subject
-- Конечно важно! Вам ли этого не понимать? Все упирается в финансирование. Вы много знаете общих топологов получивших позицию в прошлом году? Или хотя бы живых экспертов? Нет уж, Ваше сравнение совершенно не адекватно.
-- Наверное Вы имеете в виду работу Артина-Мазура? Ничего другого даже на ум не приходит. Но это сложно назвать внедрением. Большинство алгебраических геометров (по-крайней мере из тех с кем мне доводилось общаться) в лучшем случае только слышали о ней. Да и сегодня этальная гомотопическая теория изучается в основном гомотопическими топологами. Гротендик писал Квиллену в "Pursuing stacks", что так и не освоил симплициальных методов, правда тут же выдвинул свою гипотезу "как оно все устроено на самом деле" и оказался прав. Под современным внедрением я имел в виду производную алгебраическую геометрию, которая вроде бы благосклонно воспринимается алгебраическими геометрами, по крайней мере связанными с геометрической теорией представлений, и конечно же мотивную гомотопическую теорию.
-- Ну почему же узкий? Разве не правомощно сказать, что предметом изучения алгебраической геометрии является категория алгебраических многообразий? Изучать категорию означает решать задачи, которые в ней можно сформулировать. Для гомотопической категории хорошо бы, например, научиться вычислять множества морфизмов между объектами. Нужны, разумеется, и приложения, без них финансирование прикроют и будет все как с общей топологией.
-- Это именно то, что я пытаюсь Вам объяснить. То есть формально, конечно же является (именно об этом работа Строма), но на практике ее прекратили активно изучать с появлениями работ старого(?) Уайтхеда и диссертации Серра. В последние же 30 лет мне вообще неизвестно ни одной работы посвященной сильным гомотопическим эквивалентностям (т.е. конечно же исключения найти можно, например недавние работы Коула, но они скорее будут подтверждать правило). Я не исключаю, что со временем ситуация изменится, но это потребует дополнительного развития теории модельных категорий и, самое главное, новых приложений.
no subject
Не интересовался, но думаю, что такие люди есть. Общая топология - более-менее законченная наука, и важна не своими внутренними задачами, а языком, на котором могут изъясняться другие науки.
"Все упирается в финансирование."
Вы дважды упомнянули слово "финансирование". Это уведет нас далеко в сторону. Я считаю, что госфинансирование только вредит математике.
Да, Артин-Мазур, Э. Фридлендер - это первое, что приходит в голову.
"...тут же выдвинул свою гипотезу "как оно все устроено на самом деле" и оказался прав."
А вот про это я не знаю. Как оно все устроено на самом деле?
" Разве не правомочно сказать, что предметом изучения алгебраической геометрии является категория алгебраических многообразий?"
Нет, конечно. Алгебраическая геометрия сушествовала раньше теории категорий, поменяла предмет изучения с алгебраических многообразий на схемы, затем расширила предмет до алгебраических пространств и стэков, и я не возьмусь предсказать, чем алгебраическая геометрия будет заниматься через 10 лет, и будет ли оно категорией.
"Для гомотопической категории хорошо бы, например, научиться вычислять множества морфизмов между объектами."
Может, и хорошо. Что значит "вычислять"? Гомотопические группы сфер вычислимы, а тольку-то?
"То есть формально, конечно же является (именно об этом работа Строма), но на практике ее прекратили активно изучать с появлениями работ старого(?) Уайтхеда и диссертации Серра."
Это просто неверно. Теория гомотопий развивалась в основном после диссертации Серра, а не до. Даже понятие расслоения Гуревича появилось после Серра.
"В последние же 30 лет мне вообще неизвестно ни одной работы посвященной сильным гомотопическим эквивалентностям..."
В последние 30 лет это не единственная и не главная проблема с развитием математики и вообще науки. (Это недавно обсуждалось в ЖЖ.) Честно говоря, мне трудно вообразить себе работу, "посвященную сильным гомотопическим эквивалентностям". Не намного легче, чем работу, посвященную "компактным топологическим пространствам".
"...это потребует дополнительного развития теории модельных категорий..."
У нас, несоменно, совершенно разное отношение к математике. Я не могу думать о развитии теории модельных категорий как о самостоятельной задаче - равно как и о развитии теории гомотопических эквивалентностей.
no subject
-- Кроме симплициальных комплексов топологи рассматривали также кубические (Серр их использовал для вывода спектральной последовательности расслоения). Потом необходимость в них в основном отпала и их почти прекратили изучать (кроме Бангорской школы). Зато симплициальные комплексы переросли в симплициальные множества и развились в полноценную гомотопическую теорию. Оставался вопрос, а можно ли то же самое повторить для кубических множеств или каких-нибудь других, или же симплексы (категория конечных ординалов) какие-то особенные? Гротендик предложил рассматривать тестовые категории, характеризующиеся двумя свойствами: во-первых они должны быть стягиваемыми, а второе свойство более техническое, но наверняка имеет явный геометрический смысл, просто я что-то не соображу сейчас; вот лекция Жардина на эту тему. Так вот, первая гипотеза заключалась в том, что предпучки на тестовых категориях должны оснащаться модельной структурой эквивалентной пространствам. Эта гипотеза (и несколько других) была недавно (2003) доказана Сизинским (франц.; имеется так же пересказ Жардина по английски, который, кстати, за год до доктората Сизинского независимо построил модельную категорию для кубических множеств, но решил не публиковать когда увидел общее решение), а вся эта область получила название "гомотопической теории Гротендика" и активно развивается в основном, к сожалению, усилиями французской школы.
На сегодняшний день мне известно только одно утверждение, которое указывает на то, что симплексы чем-то лучше кубов или чего бы то ни было еще. Это лемма Мура говорящая что симплициальные группы автоматически фибрантны как симплициальные множества. Я спрашивал и у Жардина и у Сизинского, они не знают выполняется ли это свойство в других категориях. Хорошая тема для мастерской диссертации.
Зашкалил за лимит ЖЖ для длинны комментов, продолжение следует.
(no subject)
(no subject)
(no subject)
(no subject)
(no subject)
(no subject)
(no subject)
(no subject)
(no subject)
(no subject)
(no subject)
(no subject)
(no subject)
(no subject)
(no subject)
(no subject)
(no subject)
(no subject)
(no subject)
(no subject)
(no subject)
(no subject)
(no subject)
(no subject)
(no subject)
(no subject)
(no subject)
(no subject)
no subject
я написал в Research Statement что-либо другое, то вряд-ли получил хоть какую-то позицию. Мне кажется, что в алгебраической геометрии дела обстоят схожим образом: часть людей вовсе не использует ни схемы ни алгебраические пространства (я таких не встречал, но мне говорили что имеются и весьма влиятельны), а те кто используют в обязательном порядке мотивируют свой интерес к ним конкретными задачами.
-- вычислять означает получить эффективные средства вычислений, принципиальная вычислимость никому не помогает.
-- конечно, золотой век настал. Только не для классической теории.
-- действительно, я даже не знал, опубликовано в 55 году. Видимо работа Серра его подтолкнула к тому чтобы обобщить старые идеи с помощью поднятия гомотопий. Но это ничего не меняет, в 41 году Гуревич и Стинрод опубликовали гомотопическую точную последовательность расслоения. Понятие расслоенного пространства у них было, кажется, более общее чем локально тривиальное расслоение. После 55 года классическую теорию продолжала развивать в основном немецкая школа (но занималась она далеко не только этим). В любом случае, на сегодняшний день вся эта активность практически прекратилась.
Есть еще теория шейпов, которая видимо наиболее активно изучала гомотопические типы отличные от полиэдров, но они пошли по другому пути, моделируя свои пространства обратными системами "хороших" пространств и пришли к изучению про-категории пространств (Эдвардс и Хэстингс первыми построили на про-пространствах модельную структуру), но сегодня даже эта активность почти сошла на нет.
-- я видимо пропустил, а где не припомните?
-- Вы правы, однако причины у такой заброшенности разные. Компактные пространства очень хорошо изучены с точки зрения теоретико-множественной топологии. Про них были доказаны нетривиальные результаты в 30х годах (например Понтрягиным). С изучением же сильных гомотопических типов ничего не продвинулось дальше элементарных результатов, никакие современные методы на них не перенесены (и видимо никто не ожидает, что могут быть перенесены). В результате вся эта область потеряла актуальность.
-- я тоже этого не делаю, мной всегда руководит конкретная задача. Сформулировать задачи для которых бы потребовалась модельная категория Строма не сложно, например построить гомотопическую локализацию в сильной категории, но я не вижу мотивации, чтобы их решать.
(no subject)
(no subject)
(no subject)
(no subject)
(no subject)
(no subject)
(no subject)
(no subject)
(no subject)
(no subject)
(no subject)
(no subject)
(no subject)
(no subject)
(no subject)
(no subject)
(no subject)
(no subject)
(no subject)
(no subject)
(no subject)
(no subject)
(no subject)
(no subject)
(no subject)
(no subject)
(no subject)
(no subject)
(no subject)
(no subject)
(no subject)
(no subject)
(no subject)
(no subject)
(no subject)
(no subject)
(no subject)
(no subject)
(no subject)
(no subject)
(no subject)
(no subject)
no subject
Если есть желание двигаться дальше, а Goerss-Jardine по какой-либо причине не устраивает (хотя имеющаяся там теория категорий это просто язык, его можно освоить по-ходу, не погружаясь), то имеется старая книжка Bousfield-Kan. Написана очень доступно, но немного не по-порядку, например последнюю главу про гомотопические пределы лучше изучить до того как принимаешься за все остальное, т.к. они все время используются. Но если человек освоился с началами теории, то Bousfield-Kan это хорошая альтернатива Goerss-Jardine. Также есть много хорошо написанных статей, пригодных для начинающих, но тут уже надо ориентироваться на конкретные интересы человека, прежде чем давать рекомендации.
no subject
Нет, это Вам так кажется - видимо, Вы его хорошо знаете.
Боусфилд-Кан - совсем о другом, и даже не претендует быть учебником теории симплициальных множеств.
Хови - еще хуже, чем Goerss-Jardine (для "посторонних").
Мы как будто говорим о разных вещах. Хови - книга о модельных категориях, и это видно и по главе о симплициальных множествах. Акценты категорные. "Посторонние люди" знают теорию категорий на уровне определения категории и функтора, если повезет - они знают, что такое естественное преобразование функторов.
no subject
-- конечно, я же написал, что это нужно читать если есть желание изучать предмет дальше. Сегодня эту книгу назвали бы Симплициальная гомотопия, как Гоэрсс с Жардином и сделали, снабдив ее введением в основы теории и немного рассказав о развитии.
-- да, я тоже вдруг перестал понимать кто понимается под посторонними. Если это люди из совсем далеких областей, то зачем им симплициальные методы? Если речь идет об алгебраических геометрах, то они вроде бы должны знать теорию категорий в достаточном объеме.
Кроме определеений, которые Вы перечислили нужно знать еще лемму Йонеды, иметь представление о прямых и обратных пределах и сопряженных функторах. Мне сложно представить себе современного математика, который бы прошел мимо этих понятий, если конечно он не специалист по численным методам.
На языке схожем с книжкой Мэя имеется еще длинная обзорная статья Кертиса. Читается легче чем Мэй, но изложение конечно безнадежно устарело. Есть еще книжка Габриеля-Зисмана. Она более категорная, чем Мэй (хоть и не настолько как Хови) но в начале имеется глоссарий по теории категорий. В ней, кстати, доказана большая часть фактов необходимых для установления модельной категории на симплициальных множествах.
Есть, конечно, статьи Кана (я даже как-то раскопал его докторат в Еврейском универдитете - наверняка это единственный текст о симплициальных множествах написанный на иврите), там уж точно никакой теории категорий, кроме изобретенной по ходу дела (как например сопряженные функторы), но я их, признаюсь, никогда не читал.
В общем сегодня литературы хватает на любой вкус, можно обойтись без книжки Мэя.
(no subject)
(no subject)
(no subject)
(no subject)
(no subject)
(no subject)
(no subject)
no subject
no subject
no subject
Я просмотрел оглавление книжки Мэя. Если навскидку, то процентов 80 материала в Смирнове точно есть. В Goerss-Jardine, конечно, много того, чего нет в Смирнове, и наоборот, у Смирнова много того, чего нет в Goerss-Jardine, но здесь уже все зависит от преследуемых целей.
(no subject)
no subject
(no subject)
(no subject)
(no subject)
no subject
Мэй же пишет:
"Strom proves the conclusion of the theorem for general spaces, and his argument works for k-spaces, but the details of his proof must of course differ from Cole's."
Это совсем не похоже на утверждение о том, что у Строма есть дыры. Насчет тонкого места:
"However, there is another quite subtle point in Strom's proof of the model axioms. The factorization of a map as the composite of a cofibration and an acyclic fibration makes use of the fiberwise join (or generalized Whitney sum), and a key point is an old observation (of somebody named Hall) that the fiberwise join of (Hurewicz) fibrations is a fibration."
"A subtle point" - это не ошибка, и не дыра. Это просто a subtle point - нечто нетривиальное, и (видимо, это и хотел подчеркнуть Мэй) не обощающееся очевидным образом.
Так что, мне кажется, Ваши претензии к работе Строма необоснованы.
no subject
no subject
О да. Масса текстов 70-х годов, вероятно, были понятны тогда друзьям авторов, а теперь представлют собой загадки. Правда, для меня работа Коула выглядит менее доступной, чем Строма. Если она мне вдруг понадобится, я попытаюсь доказать все сам, но не читать работы школы Мэя. :-)
"...не делает категорию Строма центральным объектом в теории модельных категорий..."
Казалось бы, если теория модельных категорий действительно существует, то ни эта категория, ни категория Серра-Квиллена могут быть только примерами.
"...сильная категория остается эзотерикой."
Не более, чем собственно теория гомотопий.
no subject
no subject
no subject
Если теория модельных категорий рассматривает категорию Строма как патологический пример, то это значит только то, что она не приспособлена для изучения наиболее естественного примера. Видимо, я был неправ и зря приплел аксиомы Квиллена в дискуссии у Аввы. My point can be made without them.
no subject
(no subject)
(no subject)
ProfesorMulke
(Anonymous) 2011-02-28 01:39 am (UTC)(link)Охота