siyuv: (Default)
[personal profile] siyuv
На категории топологических пространств давно были построены две модельные категории: стандартная (принадлежащая Квиллену) и модельная категория Арне Строма, которая появилась в начале 70-х.

Категория Строма часто упоминается, хотя мало где используется существенным образом. Это связано ни с какими-либо свойствами этой модельной структуры, а с тем, что гомотопические эквикалентности между топологическими пространствами в качестве слабых эквивалентностей оставляют слишком много гомотопических типов; изучать их достаточно тяжело и видимо бесперспективно. Так или иначе, но единственная известная мне работа действительно использующая модельную категорию Строма принадлежит Майклу Коулу (заранее прошу прощения у читателей не имеющих доступа к МathSciNet и другим рессурсам, но этот автор не заботится о доступности своих работ). Там строится новая модельная категория (смешанная из стромовской и стандартной), но что с ней делать дальше остается неясным.

Между тем свойства стромовской модельной категории весьма примечательны. Например все объекты в ней одновременно кофибрантны и фибрантны. До сих пор неизвестно существует ли аналогичная модель для топологических пространств со слабыми гомотопическими эквивалентностями (Марк Хови предполагает что нет).

Однако тот факт что эта модельная категория в серьез не изучалась в последние 35 лет похоже привел к тому, что полного доказательства сегодня никто не знает. Я это обнаружил когда прочитал вот этот пост Мэя в рассылке по алгебраической топологии. Там он указывает, что в оригинальной работе имеются некоторые "subtle points". Настоящие ли это дыры я не знаю, но судя по тому что его студент передоказал теорему Строма в более ограничивающих условиях (для компактно-порожденных пространств), настоящие.

Мой интерес к этой модельной категории был в ту пору (в 2003 году, когда Мэй писал свой пост) не вполне праздным. Я искал тогда примеры модельных категорий, не порождающихся корасслоениями. Стромовская категория -- очевидный кандидат, но действительно ли она не является кофибрантно-порожденной по-видимому не известно до сих пор, как впрочем и то, верна ли теорема Строма в изначально заявленной общности.

Date: 2009-01-08 02:24 am (UTC)
From: [identity profile] sowa.livejournal.com
Насколько я помню, у Фукса-Фоменко вообще не упоминаются расслоения Гуревича. Во всяком случае, в варианте Фукс-Фоменко-Гутенмахер. Нельзя ли ссылку?

Раз уж Вы не умеете пользоваться Гуглом, даю подсказку - весь архив этого журнала есть онлайн в свободном доступе.

Да, Ваши аргументы не убеждают. Разногласие не лингвистическое. У нас с Вами принципиально разные взгляды на математику. Я даже не знаю, как можно приобрести такие взгляды, как у Вас. Я никогда не думал, что топология занимается топологическими пространствами, etc. Один из двух разделов математики, называемых теорией узлов, действительно занимается узлами - и его интересность сомнительна.

А П. Фрейда, Вы, выходит, не читали.

Date: 2009-01-08 03:02 am (UTC)
marina_p: (Default)
From: [personal profile] marina_p
В Фуксе-Фоменко упоминаются расслоения Гуревича (это ведь когда есть свойство накрывающей гомотопии для произвольного, не обязательно клеточного пространства?). Определение на с.74. И, мне кажется, они там дальше где-то используются, но это уже быстро не найти.

Date: 2009-01-08 04:07 am (UTC)
From: [identity profile] sowa.livejournal.com
Действительно, упоминаются. Это хорошо, что они добавили, а то было несколько странно. Но, похоже, все-таки не используются.

Date: 2009-01-08 05:11 pm (UTC)
From: [identity profile] siyuv.livejournal.com
Не используются.

Profile

siyuv: (Default)
siyuv

June 2024

S M T W T F S
      1
2345678
9101112131415
16171819202122
232425262728 29
30      

Style Credit

Expand Cut Tags

No cut tags
Page generated Jul. 9th, 2025 03:06 pm
Powered by Dreamwidth Studios