Модельная категория Строма
Dec. 19th, 2008 11:31 pm![[personal profile]](https://www.dreamwidth.org/img/silk/identity/user.png)
На категории топологических пространств давно были построены две модельные категории: стандартная (принадлежащая Квиллену) и модельная категория Арне Строма, которая появилась в начале 70-х.
Категория Строма часто упоминается, хотя мало где используется существенным образом. Это связано ни с какими-либо свойствами этой модельной структуры, а с тем, что гомотопические эквикалентности между топологическими пространствами в качестве слабых эквивалентностей оставляют слишком много гомотопических типов; изучать их достаточно тяжело и видимо бесперспективно. Так или иначе, но единственная известная мне работа действительно использующая модельную категорию Строма принадлежит Майклу Коулу (заранее прошу прощения у читателей не имеющих доступа к МathSciNet и другим рессурсам, но этот автор не заботится о доступности своих работ). Там строится новая модельная категория (смешанная из стромовской и стандартной), но что с ней делать дальше остается неясным.
Между тем свойства стромовской модельной категории весьма примечательны. Например все объекты в ней одновременно кофибрантны и фибрантны. До сих пор неизвестно существует ли аналогичная модель для топологических пространств со слабыми гомотопическими эквивалентностями (Марк Хови предполагает что нет).
Однако тот факт что эта модельная категория в серьез не изучалась в последние 35 лет похоже привел к тому, что полного доказательства сегодня никто не знает. Я это обнаружил когда прочитал вот этот пост Мэя в рассылке по алгебраической топологии. Там он указывает, что в оригинальной работе имеются некоторые "subtle points". Настоящие ли это дыры я не знаю, но судя по тому что его студент передоказал теорему Строма в более ограничивающих условиях (для компактно-порожденных пространств), настоящие.
Мой интерес к этой модельной категории был в ту пору (в 2003 году, когда Мэй писал свой пост) не вполне праздным. Я искал тогда примеры модельных категорий, не порождающихся корасслоениями. Стромовская категория -- очевидный кандидат, но действительно ли она не является кофибрантно-порожденной по-видимому не известно до сих пор, как впрочем и то, верна ли теорема Строма в изначально заявленной общности.
Категория Строма часто упоминается, хотя мало где используется существенным образом. Это связано ни с какими-либо свойствами этой модельной структуры, а с тем, что гомотопические эквикалентности между топологическими пространствами в качестве слабых эквивалентностей оставляют слишком много гомотопических типов; изучать их достаточно тяжело и видимо бесперспективно. Так или иначе, но единственная известная мне работа действительно использующая модельную категорию Строма принадлежит Майклу Коулу (заранее прошу прощения у читателей не имеющих доступа к МathSciNet и другим рессурсам, но этот автор не заботится о доступности своих работ). Там строится новая модельная категория (смешанная из стромовской и стандартной), но что с ней делать дальше остается неясным.
Между тем свойства стромовской модельной категории весьма примечательны. Например все объекты в ней одновременно кофибрантны и фибрантны. До сих пор неизвестно существует ли аналогичная модель для топологических пространств со слабыми гомотопическими эквивалентностями (Марк Хови предполагает что нет).
Однако тот факт что эта модельная категория в серьез не изучалась в последние 35 лет похоже привел к тому, что полного доказательства сегодня никто не знает. Я это обнаружил когда прочитал вот этот пост Мэя в рассылке по алгебраической топологии. Там он указывает, что в оригинальной работе имеются некоторые "subtle points". Настоящие ли это дыры я не знаю, но судя по тому что его студент передоказал теорему Строма в более ограничивающих условиях (для компактно-порожденных пространств), настоящие.
Мой интерес к этой модельной категории был в ту пору (в 2003 году, когда Мэй писал свой пост) не вполне праздным. Я искал тогда примеры модельных категорий, не порождающихся корасслоениями. Стромовская категория -- очевидный кандидат, но действительно ли она не является кофибрантно-порожденной по-видимому не известно до сих пор, как впрочем и то, верна ли теорема Строма в изначально заявленной общности.
no subject
Date: 2009-01-23 07:43 am (UTC)""...Фрейд под предметом изучения понимает категорию" -- эта идея лежит на поверхности."
Это Вы ее туда положили. Еще раз: если бы Фрейд так думал, он бы так и написал.
"...К-теория это такая линеаризация топологических вопросов"
Это просто цитата из Атийи, который говорил о топологической К-теории.
Область, несомненно, существует. Я Вам еще пример гармонического анализа приводил. Могу посоветовать предисловие к книге Манина и Панчишкина по теории чисел, несомненно, написанное самим Маниным. Там обсуждается, что такое теория чисел, и отмечается, что теория чисел отнюдь не определяется предметом "целые числа". Мне не хочется пересказывать его изящную прозу "своими словами".
У Манина можно найти и обсуждение того, что такое гомологическая алгебра - в предисловии к книге Гельфанда и Манина.
Я думаю, что и теорию категорий нужно понимать в том духе, как Манин понимает теорию чисел. При этом есть существенная разница - самостоятельного предмета у теории категорий нет, есть категорный подход к другим разделам математики.