siyuv: (Default)
[personal profile] siyuv
На категории топологических пространств давно были построены две модельные категории: стандартная (принадлежащая Квиллену) и модельная категория Арне Строма, которая появилась в начале 70-х.

Категория Строма часто упоминается, хотя мало где используется существенным образом. Это связано ни с какими-либо свойствами этой модельной структуры, а с тем, что гомотопические эквикалентности между топологическими пространствами в качестве слабых эквивалентностей оставляют слишком много гомотопических типов; изучать их достаточно тяжело и видимо бесперспективно. Так или иначе, но единственная известная мне работа действительно использующая модельную категорию Строма принадлежит Майклу Коулу (заранее прошу прощения у читателей не имеющих доступа к МathSciNet и другим рессурсам, но этот автор не заботится о доступности своих работ). Там строится новая модельная категория (смешанная из стромовской и стандартной), но что с ней делать дальше остается неясным.

Между тем свойства стромовской модельной категории весьма примечательны. Например все объекты в ней одновременно кофибрантны и фибрантны. До сих пор неизвестно существует ли аналогичная модель для топологических пространств со слабыми гомотопическими эквивалентностями (Марк Хови предполагает что нет).

Однако тот факт что эта модельная категория в серьез не изучалась в последние 35 лет похоже привел к тому, что полного доказательства сегодня никто не знает. Я это обнаружил когда прочитал вот этот пост Мэя в рассылке по алгебраической топологии. Там он указывает, что в оригинальной работе имеются некоторые "subtle points". Настоящие ли это дыры я не знаю, но судя по тому что его студент передоказал теорему Строма в более ограничивающих условиях (для компактно-порожденных пространств), настоящие.

Мой интерес к этой модельной категории был в ту пору (в 2003 году, когда Мэй писал свой пост) не вполне праздным. Я искал тогда примеры модельных категорий, не порождающихся корасслоениями. Стромовская категория -- очевидный кандидат, но действительно ли она не является кофибрантно-порожденной по-видимому не известно до сих пор, как впрочем и то, верна ли теорема Строма в изначально заявленной общности.

Date: 2009-01-28 07:21 am (UTC)
From: [identity profile] siyuv.livejournal.com
Я этой книжки не знаю. В сети имеется?

Date: 2009-01-28 11:40 am (UTC)
From: [identity profile] vanja-y.livejournal.com
Я прошу прощения, так как мог ввести в заблуждение, потому что писал название по памяти. Правильное название на английском:


Smirnov, V.A.
Simplicial and operad methods in algebraic topology. (English)
[B] Translations of Mathematical Monographs. 198. Providence, RI: American Mathematical Society (AMS). x, 235 p. \$ 89.00 (2001). ISBN 0-8218-2170-9/hbk

В электронном виде мне ее найти, к сожалению, не удалось.

Date: 2009-01-28 01:12 pm (UTC)
From: [identity profile] siyuv.livejournal.com
Спасибо большое! До книжки еще не добрался, но посмотрел содержание в Google book search. Выглядит интересно. Вы не знаете, это тот самый Смирнов, который объявил о законченном вычислении стабильных гомотопических групп сфер?

Date: 2009-01-28 05:02 pm (UTC)
From: [identity profile] vanja-y.livejournal.com
Я осторожно скажу, что это тот Смирнов, про которого мне говорили, что он объявлял что-то о стабильных гомотопических группах сфер :-)

Profile

siyuv: (Default)
siyuv

June 2024

S M T W T F S
      1
2345678
9101112131415
16171819202122
232425262728 29
30      

Style Credit

Expand Cut Tags

No cut tags
Page generated Jul. 4th, 2025 05:03 am
Powered by Dreamwidth Studios